

Academic Journal of Earth Sciences and Geological Studies ISSN UA | Volume 01 | Issue 01 | June-2018

Xournals

Volcanic Eruption and its Impact

Jaipriya Phukan¹

Available online at: www.xournals.com

Received 15th November 2017 | Revised 12th February 2018 | Accepted 18th March 2018

Abstract:

In many areas around the world volcanic eruptions in historic times have brought death and destruction to almost half a billion people volcanoes poses a threat today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruption cause a hazardous effects on climate, environment as well as health of the exposed person. The unfavorable effect of volcano depends upon the magma viscosity, distance from volcano and the concentration of gases. According to the data every year an average of 1000 people become the victim of the volcanic eruption. In this people are not only killed by pyroclastic flows, mudflows and ash falls but also from starvation after crop failures because of volcanic eruptions. This paper focuses on volcanic phenomena which provide the understanding of the specific health hazards issues, associated with volcanic phenomena.

KEYWORDS: Volcano, Impacts, Environment, Health Hazard

1. Arya Vidyapeeth College, Guwahati, Assam, INDIA

Xournals

Introduction

The name volcano has originate from the roman word Vulcan, a god of fire in Roman mythology. People instantly imagined a scenario of cone shaped mountain with smooth steep slopes, perhaps with a snow covered peak and a ring of smoke rising skyward. The description is accurate but it only applies to startovolcano, which is only a type of volcano. Although the shape and size of volcano are differ in many ways from stratovolcano, some volcanoes are composed of long, gentle slopes often covered with fertile soil while some have no vertical structure instead composed of a depression hundreds of yards deep and extending over several miles. The type of activity carried by volcano is clearly indicated by the shape of volcanic structure.

The relationship between people and volcano is as old as the human race. Volcanic eruptions is one of the most powerful display forces of nature. The volcanic phenomenon is important for society today because of its large eruption impact on climate and society. The eruption from volcanic is sometimes a catastrophically destructive force and greatly influence changes of global environment. Throughout the world every year, about 50 volcanoes are active above sea level, threatening the lives and property of millions of people.

The hazardous effects are produced from volcanic eruption which directly affects the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold). Ash fallout from large-scale explosive eruptions can cover large areas of Earth and produce aerosol layer which can directly affect the global energy. Volcanic eruptions can produce such features as

floods, pyroclastic flows, and mudflows that can cause major loss of life and property burying towns and villages within minutes. Eruptions can rapidly change productive landscapes to virtual deserts.

Many empirical studies have shown that major eruption can produce a decrease in surface air temperature of up to a few tenths of a degree Celsius over the Northern Hemisphere land masses and that the effects may last for 2 or 3 years. This temperature decrease has been simulated by numerical models using realistic estimates of the nature of the aerosol cloud. The Previous empirical studies of volcanic effects have examined fluctuations in monthly, seasonal or annual climate data, but generally only at a frequency of one observation per year.

Their unfavorable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. Geology of volcanoes:

Volcanoes are associated with tectonic plate margins. Most of the volcanoes are recognized as tall cones with summit craters and tend to erupt infrequently but violently. Examples include Mount St Helens (USA), Mount Fuji (Japan), and Pinatubo (Philippines), all belonging to the "Ring of Fire" around the Pacific region. Volcanoes are also found where tectonic plates are separating, for example, in the African Rift Valley. Some volcanoes are not related to tectonic plates and instead to deeper seated convective processes occurring within the Earth's mantle. These so-called "hot spots" are found in both oceanic and continental regions, and include the volcanoes of Hawaii and Yellowstone (USA).

Type of Hazard	Description	Effects
Acid Rain	Rain becomes acidic when rain falling	Irritant to eyes, skin. Secondary effects
	through volcanic gas and acid particle	on vegetation, property and water
	emissions and may dissolve metal	quality. (Rainwater collected from
	roofs	metal roofs may be contaminated with
		metals such as lead.)

Types of hazards associated with volcanic phenomena:

Ash and Tepra	Ash is a collective term for fine	Airborne ash respiratory and
	pyroclasts (solid fragments <2 mm	cardiovascular hazard (asthma,
	diameter, ejected from volcanoes).	bronchitis, pneumoconiosis). Irritant to
	Tehpra is the collective term for solid	eyes and skin.
	fragments such as ash or pumice	Falling of ash can lead to property
	ejected from volcanoes that have fallen	damage, contaminate water (e.g. with
	to ground from eruption clouds	fluorine carried on ash or by causing
	e e e e e e e e e e e e e e e e e e e	turbidity), contaminate or bury
		agricultural land
Earthquakes	Earthquakes can be associated with	Damage of properties and
	volcanic activity	infrastructure resulting in impact
		injuries. It may also cause tsunami
Gas and acid particle emissions	Emissions of SO2, Sulphuric acid	Acid gases: bronchoconstriction,
	aerosol, HCl, HF, CO2, H2S, radon	aggravation of respiratory disease; eye
	and other gases may occur in	and skin irritation
	association with eruptions or through	CO2: asphyxiation, secondary effects
	degassing activity.	on vegetation, asphyxiation; low level
	Soil gas emissions of gases such as	long term population exposures
	CO2, H2S, and radon are common in	potentially impacting on respiratory,
	many volcanic areas (radon emissions	cardiovascular, and nervous system
	are problematic only in houses with	
	ground gas diffusion where CO2 forms	
	a carrier gas)	
Landslides, debris avalanches and	Debris avalanches are fast moving,	Drowning, impact injuries. Secondary
lahars	gravity driven currents of partially or	damage to property and agricultural
	fully water saturated volcanic debris. If	land
	the debris flow consists of a significant	
	fraction of clay sized particles it is	
	called a lahar or mudflow. May be	
	triggered by eruptions, gravity,	
	earthquakes, or heavy rain	
Lava flows	Flows of molten rock. May emit acidic	Usually relatively slow moving,
	gases. Steam explosions may result	therefore allowing evacuation.
	from contact with groundwater	Thermal injuries. May cause forest and
		property fires. Methane explosions can
		occur as lava moves over vegetation
Tsunami	Tidal wave from volcanic debris	Drowning and injuries from property
	avalanches into oceans or lakes or	damage
	occasionally volcanogenic	
	earthquakes	

Previous studies suggested that 490 volcanic events in the 20th century resulted in human impacts, with 4–6 million people evacuated, made homeless, or otherwise affected. Fatalities occurred in around half of the events, with an estimated total of 80 000– 100 000 deaths. In future the risk of catastrophic human losses is much larger than witnessed in the historic period, the increase in human population, and proximity of major cities worldwide to active volcanoes, including Naples and the capitals of Mexico, Japan, the Philippines, Ecuador, Guatemala, and El Salvador.

Conclusion

Volcanic eruptions have a devastating effect on people and the environment. Strong explosive volcanic eruptions are known to have a pronounced impact on the climate and it is important to understand about the volcanoes, structure of volcanoes, types of volcanoes in order to reduce the negative impact of volcano eruptions and take advantage of its benefits on people and environment. Major mortality associated with volcanogenic phenomena recorded in history has resulted from pyroclastic density currents (avalanches of hot ash, gases, and rocks), tsunami, landslides, and debris flows which directly affects the environment, climate as well as the health of the person. An increasingly multidisciplinary approach is being adopted in research into health hazards of volcanoes and improving management of health risks

Eugenija Zuskin, et al. "Effects of Volcanic Eruptions on Environment and Health." *The Journal of Institute for Medical Research and Occupational Health*, vol. 58, no. 4, 6 Dec. 2007, pp. 479–486.

G Wilson, et al. "Volcanic Hazard Impacts to Critical Infrastructure: A Review." Journal of Volcanology and Geothermal Research, vol. 286, 1 Oct. 2014, pp. 148–182.

Hansell, A L, et al. *Advances in Pediatrics*. U.S. National Library of Medicine, Feb. 2006, www.ncbi.nlm.nih.gov/pmc/articles/PMC2078062/.

Hansell, A, and C Oppenheimer. "Health Hazards from Volcanic Gases: a Systematic Literature Review." *Advances in Pediatrics.*, U.S. National Library of Medicine, Dec. 2004, www.ncbi.nlm.nih.gov/pubmed/16789471.

Haywood, Jim M., et al. "The Impact of Volcanic Eruptions in the Period 2000–2013 on Global Mean Temperature Trends Evaluated in the HadGEM2-ES Climate Model." *Quarterly Journal of the Royal Meteorological Society*, Wiley-Blackwell, 25 Nov. 2013, rmets.onlinelibrary.wiley.com

Iles, Carley E., et al. "The Effect of Volcanic Eruptions on Global Precipitation." *Journal of Geophysical Research: Atmospheres*, vol. 118, no. 16, 2013, pp. 8770–8786.

Kirianov, V. Yu. "ENVIRONMENTAL IMPACTS OF VOLCANIC ERUPTIONS." *NATURAL AND HUMAN INDUCED HAZARDS*, vol. 1.

Mather, Tamsin A. "Volcanoes and the Environment: Lessons for Understanding Earths Past and Future from Studies of Present-Day Volcanic Emissions." *Journal of Volcanology and Geothermal Research*, vol. 304, 2015, pp. 160–179.